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Abstract-The pyrolysis process of polystyrene (PS) has been investigated to fred optimal temperature profiles 
which minimize the reaction time and the reaction energy required for a given conversion in a batch reactor. 
Assuming that the fi-agmentation of PS ix pyrolysis is described by the medlanism of iNldonl and/or specific degra- 
dations, we used a continuous !dnetic model for solving three moment equations to determine the transient change of 
molecular weight distributions (MWD) of the polymers. We then converted this independent-variable minimization 
problem using a coordinate b-ansfonnation to a depealdent-variable minimization problem that yields the optilnal tenl- 
peramre profiles as its solution. The opfmization results obtained in this study encompass the cases of different objec- 
tive fimctions which cover minimum reaction time, minimum energy consunaed, or any combination of these. It has 
Ru-ned out that maintaining the reaction tempem~re constant at an optimal level is the best solution in this optimiza- 
tion problem. An economic cost function also ho~s been introduced o~s the thild objective function to be minimized 
in addition to the reaction time and the reaction energy. This new fimction can serve as a convenient measure to 
judge the performance of the pyrolysis process minimizing the involved cost. 

Key words : Batch Reactor, Cost Minimization, Coordinate Transformation, Objective Functions, Opfmization, Polymer 
Pyrolysis, Polystyrene (PS) 

INTRODUCTION 

Technological advances made in the plastics industry over 
the past several decades have steadily increased the volume of 
plastics used in various applications in human civilization. The 
abundance of these plastic goods, on the other hand, has conti- 
nuonsly created plastic waste problems around the world. At the 
moment, most of these plastic wastes are disposed of through 
durnping into landfills or burning in incinerators along with other 
solid wastes. These conventioual methods will, however, be piss- 
ed out in the near future due to the serious environmental prob- 
lems they entail. The lack of landfill space for dumping non- 
biodegradable plastics, and toxic gooses generated ctut~ag the sim- 
ple buming are the partial list of the obvious difficulties inherent 
in the currently employed wastes management methodology. 

Meanwhile, the thermal recycling of waste plastics by means 
of pyrolysis has become the subject of significant industrial 
and academic interest in recent years as a promising alterna- 
tive disposal option [Kaminsky, 1992]. The reason is two-fold: 
fast, pyrolysis does not require dumping landfills and second, 
few toxic gases are generated because pyrolysis is carried out 
in the absence of oxygen. Developing environment-fiiendly and 
cost-effective pyrolysis processes is thus now an engineering 
challenge that is worth pursuing through process optimization 
techniques. 

In figs study, polystyrene (PS) has been chosen as an ex- 
ample material clue to its wide occurrence in municipal solid 
wastes. It is known that high viscosity and low heat transfer 
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rate of the PS melts together with the complicated dependency 
of its reaction rates on the reactor geometry and mixing, pose 
problems for the commercial practices of PS melt recycling. To 
avoid these problems, degradation of PS in solution (e.g., min- 
eral oil) has been proposed [Math-as et al., 1997b], and we study 
that subject here. 

Although there have been many published results on the 
kinetic mechanisms of polymer degradation [Westerhout et al., 
1997], systematic optimization studies, based on mathematical 
models, of the degradation of polylners have not yet appeared 
in the literature. In the past only a simple power law model 
has been used to describe the pyrolysis kinetics of polymers 
[Westeltlout et al., 1997; Flynn and Florin, 1985]. The discrep- 
ancies in the values of the kinetic constants are an example of 
the unavoidable consequences of using this power law model 
to describe the polymer degradation mechanism, since the eva- 
poration and the chemical reactions occurring in the degrada- 
tion are not distinguished in this model. 

Recently, more advanced models for pyrolysis processes have 
been developed, i.e., random chain scission (RCD) model [We- 
sterhoLlt et al., 1997], and a continuous kinetics model by McCoy 
and his coworkers [1995, 1997, 1998]. The lager can track the 
evolution of both the reactants and products in terms of the 
molecular weight distributions (MWD) while the former exhib- 
its the spectrum of products only. 

We have conducted an opthnization study on the PS pyrol- 
ysis in solution in a batch reactor employing the reaction tem- 
perature as a manipulated variable in the continuous population 
balance equations of the system. The objective functions of figs 
optimization can be made from various system goals such as 
moximtml yield, minimum reaction thne, and minimum energy 
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consumed. Obviously, depending upon the particular objective 
functions we have chosen, the optimization results could be- 
come different. To consider simultaneously the two most im- 
portant objective functions of this study, i.e., minimum reac- 
tion time and minimum energy consumed for a given conver- 
sion, we have introduced an economic criterion: a single meas- 
ure reflecting the econonfic values of the various PS products 
recovered during the pyrolysis. 

df(x,t) 
d-----~ =2k~i~ a'~(x,x )f(x ,t)dx k,f(x,t) 

k~i~ K2~(x x~,x )fix ,t)dx k~f(x,t) 

T H E O R E T I C A L  M O D E L I N G  

1. Degradation Mechanisms 
The thermal degradation of PS in solution in a batch reac- 

tor is generally carried out under a high pressure in a liquid 
phase in order to prevent vaporization of light components like 
solvent and monomers. The degradation of polymer molecules 
has been assumed to be represented by the two mechafflsms 
of random and specific degradations. The former means the 
binary scission of polymer bonds at any position along the 
chain, whereas the latter the release of monomeric species (sty- 
rene in this case) by scission at the chain end [Wang et al., 
1995]. Besides styrene mononlers, dimers, bilners, etc. can also 
be handled in the model, but for the simplicity of the opti- 
mization methodology in this study only monomers are con- 
sidered in the modeling of PS degradatioxl as recovered prod- 
ucts. 

The 1-andom and specific degradations are described below. 

Random degradation x' k, > x+(x' x) (1) 

Specific degradation: x' k~ > x,+(x' x,) (2) 

where x' and x denote molecular weights of polymers whereas 
x, that of monomers, and k,. and k, represent reaction rate con- 
stants of  the random and specific degradations, respectively, 
shown below. 

k,=k0 exp(- R~ ) (3) 

k~ =k~0 exP@R~ ) (4) 

Random degradation causes the main chains to break down 
1-andomly, which results in more smooth molecular weight dis- 
tfibutions, while specific degradation (chain-end scissioxl) is re- 
sponsible for the formation of styrene monomers. 
2. Continuous Population Balance Equations 

Continuous kinetic models in wkich the lnolecular weight of 
the polymers is treated as a continuous variable have been suc- 
cessfully used to study polymer degradatioxl problems in recent 
years [McCoy and Madras, 1997; Madras et al., 1997a, b; Wang 
et al., 1995]. Two assumptions are commonly incorporated : fwst- 
order irreversible degradation reactions and equal reactivity for 
all degl-adatioxl reactioxls irrespective of the chain length of poly- 
mer molecules involved in the reactions. The resulting rate 
equations for polymer degradation and mononler fonnation are 
as follows. 
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(5) 

dg-~'t) = k~i ;f2~(x~, x') f(x',t) dx' (6) 

where f(x, t) and g(x, t) are the M ~ D s  of the polymers and 
the specific products, respectively. The stoichiometric kernels K2, 
(x, x') and .Q~(x'-x,, x') in Eq. (5) are the probability density 
functions (PDF) for the polymers having the MW of x' which 
are degraded to lower MW of x through 1-andom and specific 
fragmentatioxl processes described in Eqs. (1) and (2), respec- 
tively. K2~(x,, x') in Eq. (6) is the PDF for the monomers hav- 
ing the MW of x, which are to be formed from polymer having 
the lVl~V of x' through specific degradation of Eq. (2). 

The first term on the right hand side of Eq. (5) accounts for 
the rate of generation of polymers having the MW of x by 
random scission path, while the second term the rate of  dis- 
appearance of polymers by the same 1-andom path of Eq. (1). 
The third and fourth terms explain the same generation and 
disappearance processes of polymers, respectively, but this time 
by the specific degradation patt~ of gq. (2). Similarly, the right 
hand side of Eq. (6) refers to the rate of formation of mono- 
mers by specific degradation of Eq. (2). 

The functional forms of the stoichiolnetlic kemels for the 
1-andom and specific degradations are given as follows [McCoy 
and Madras, 1997]. 

~ , ( .  x')= 1/x' (7) 

~(x'  x~, x')=~[x (x' x~)] (8) 

~(x~, x')=a(x-x~) (9) 

where 8 is the Divac delta functioxl. 
3. M o m e n t  Equations 

We formulate moment equations by multiplying x ~ to Eqs. 
(5) and (6) followed by integrating from zero to ftffimty : 

I ] x  " [Eqs. (5) and (6)] dx (10) 

The resulting equations for nth moments of the polymers and 
monomers, i.e., f(~>(x, t) and g(~>(x, t), are obtained as below (Fox- 
the detailed derivation, see the Appendix.). 

df~ k,tX~ = F1 (11) 
dt 

df(,/(t) k~x~ f(~ = F2 (12) 
dt 

df~(t) (1/3)k,f ~(t) 2k~x~f~'~(t)+k~x~t x~ ~ (13) 
dt 

dg(~ 
dt k f(~ = F4 (14) 

dg (1 ~(t)_ k~x~f(0~(t ) = F, = x~F4 (15) 
dt 

dg~(t) = k~2~ f(~ = F~ = x~F4 (16) 
k i t  
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where MW moments are defined as 

f'"'(t) = I[x"f(x, t)dx (17) 

g'"~(t) = I[x"g(x, t)dx (18) 

where the superscript n indicates the order of  the moments. 
4. Determination of MWI)  by a G a m m a  Distribution 

To represent the MWDs of the polymers and products, we 
employ a gamma distribution function. This function is known 
to be flexible enough to portray the MVgDs of polymers very 
well. Other commonly used MWD functions such as expone- 
ntial, Poisson, Gaussian, delta, and rectangular distributions are all 
special cases of  this gamma distribution [Madras and McCoy, 
1998]. Since the gamma distribution is completely determined 
by its first three moments, here we solve just the six moment 
equations of  Eqs. (11) to (16) to track the evolution of MWDs 
instead of directly tackling Eqs. (5) and (6). 

The molar fraction gamma distribution for polymers is then 
defined as 

f(x, t)/I[f(x,t)dx 

X X o X X o 
= exp /[/3(t)F(t)] for x_>~ (19) 

f o r  X < X o  

where x0 is the lowest MW in polymer samples, and the shape 
parameters of  o~(t) and/3(t) are given as below. 

a(t)=[M,(t) xo]//3(t) =[M.(t) xo]Vc~2(t) (20) 

f l ( t ) = f f ~ ( t ) / [ M , , ( t )  x@ (21) 

and 

- -  I,] xf(x't)dx f"'(t) 
M , ( t ) -  i j (x , t )d  x - f ,o , ( t  ) (22) 

~ - f~'[x M,(t)]2f(x,t)dx_;~]x2f(x,t)dx __ 

- i[r(x,t)dx - i[r(x,t)dx [M"( t ) ]2  

f2~(t) l - f , ) ( t ) l  
= fo)( t )  Lf~ (23) 

The weight fraction gamma distribution for polymers is simply 

f,~,(x,t) = xf(x,t) (24) 

Fig. 1 shows the evolution of the MWD with time during 
the pyrolysis. The shift of  the MWD toward the lower range 
of MW as reaction progresses is caused mainly by random de- 
gradation, and here the distinguished peak in the low MW re- 
gion represents the styrene monomers formed by specific de- 
gradation (chain-end scission). 

F O R M U L A T I O N  O F  T H E  O P T I M I Z A T I O N  
P R O B L E M  
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Fig. l.  Transient molecular weight distributions of the poly- 

mers and monomers during the pyrolysis. 

to find the most environment-friendly and cost-effective pyrol- 
ysis technology, namely, a high monomer yield with both the 
reaction time and the consumed reaction energy being reduced 
as much as possible. In the study here, we set our optimiza- 
tion goal to be finding the optimal reactor temperature curves 
that simultaneously minimize the reaction time and the consum- 
ed energy for a given final conversion. So we have a nonlinear 
free-end-time/fixed-end-point problem. General standard solu- 
tion methods for this kind of problem, however, have not been 
fully established yet. 

To circumvent this problem, a coordinate transformation sim- 
ilar to those used by Kwon and Evans [1975] and Song et al. 
[1996] has been introduced to convert our problem to a fixed- 
end-time/free-end-point type for which many standard solution 
methods have been known [Kirk, 1970]. This transformation 
is always possible when we can find at least one dependent 
variable that monotonically increases as the reaction proceeds. 
In most polymerization and depolymerization reactions, includ- 
ing the present polymer pyrolysis processes, the conversion of 
the reaction just satisfies this requirement. Hence by adopting 
this conversion as our new independent variable, we perform 
a coordinate transformation of the system. 

First, the conversion in the pyrolysis processes is defined as 

mass of polymers at time t_ l  P')(t) (25) 
v = 1 initial mass of polymers f~" 

Differentiating both sides of this equation with respect to time, 
we get 

dr_  1 df"~(t)=F.,. (26) 
dt f~" dt 

Next, a coordinate transformation of the system equations is 
carried out by changing the variables as shown below. 

t--+y, (27) 

f ~ y 2  (28) 

fi2i___~y~ (29) 

The principal issue in the pyrolysis study of plastic wastes is g~O~__>y~ (30) 

May, 1999 
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The final state equations resulting from the above coordinate 
transfolanation are then as follows. 

dyi 1 Gi (31) 
d~ F* 

dy~ Fi dy3 F3 dy4 F4 
d~ P G~,-~- p G3, a n d - ~ - = ~ = G 4  (32) 

Tile other dependent variables that are not transforlned are 
simply rederived from the transformed variables (dependent 
and independent) as shown below. 

f/~ f~{1 T) (33) 

g~,/ x~y~ (34) 

g~ x~y~ (35) 

Now the optimization problem becomes : 
Find tile temperature profile (T(t)) which minimizes 

Objective function J=function of reaction time, 
reaction energy, or 
any combination of reaction criteria 

06) 
subject to 

310 ~ ~ (37) 

v s 0.9 (38) 

The temperature, the parameter which enters the system equa- 
tions through the reaction rate constants of Eqs. (3) and (4), be- 
conies tile nlanipulating variable whose tinle dependence is tile 
solution of this optimization problem. The temperature bounds 
of (37) have been chosen to ensure two things : tile lower teln- 
peramre is necessary to ensure degradation reactions, not the 
polymerization reactions, to take place [Odian, 1991], and the 
upper temperature is necessary to avoid products in undesir- 
able states such as in the coking state [Van Krevelen, 1990]. 
The final conversion in the study was set at 90 %. The above 
optimization in general constitutes an unconstrained nonlinear 
optimization problem for which many nonlinear programming 
tectmiques like Davidson-Fletcher-Powell (DFP) or Broyden- 
Fletcher-Goldfarb-Shanno (BFGS) methods are available [Rao, 
1996; Reklaitis et al., 1983]. 

Whereas tile final reaction time is easily computed by solv- 
ing the ordinary differential equations given by Eq. (31), the 
final total energy consumed is not readily obtained. So we txave 
used here the following energy balance of the system for ob- 
taining the total energy consumed. 

319 

dT �9 dl~+( AHe)rd p%--~ = q~, 

where 

(39) 

die= U(A/V)(T To) (40) 

dc~ dg ~~ c0) 
rd -~ -~ k~f (t) (41) 

Here AH a in Eq. (39) is defined as tile heat of depolylner- 
ization per unit mole of monomer which is produced by Eq. 
(41) through the specific degradation reaction only. 

Then the total energy consumption during the pyrolysis can 
be divided into three parts as shown below. 

J=I~'(V ~)dt  

, e~, [ dT+ �9 +(kHd)rfdt : v  j0 Locp-~ q, 
, .a  

=mcpI:~---Ttdt+ UAI:(T T,)dt  ,,~to(0~ + V(AH~)j2~-t dt (42) 

=E~ =E~ =E3 

The first term is for elevating the reaction from room temper- 
ature to tile operating texnpex-ature, tile second teml fox- com- 
pensating the heat loss and the third term for providing heat 
to the endothermic pyrolysis reactions. 

R E S U L T S  A N D  D I S C U S S I O N  

The results of the above optimization problem are shown in 
Table 1. Case I represents the results when the objective func- 
tion is tile reaction time and tile consb-aints are none. Actually 
this is a trivial result because the reaction time is minimal 
when the highest possible temperature is followed in the reac- 
tion, i.e., 500 ~ in this case. As a matter of fact, as shown in 
Fig. 2, the reaction time becomes shorter as the constant reac- 
tion tenlpex-ature gets higher. In Otilex- words, ii1 Case I, in order 
to attain the minimum reaction time we have to pay a penalty 
on the reaction temperature, i.e., it stays on the maximum al- 
lowable level. It should be noted that since we have not im- 
posed any constraints on the increasing rate of reactor temper- 
ature in tiffs numerical study, tile obtained optimal texnpex-ature 
trajectories take the shape in which the highest allowed tem- 
perature is instantly reached from the room temperature and 
is maintained thereafter on tiffs constant level. If, however, a 
finite heating rate of the process is included as a constraint in 
the optimization problem, the optimal temperalure trajectories will 

Table 1. Optimization results when the objective function is the reaction time and/or the process energy 

Case Objectives Consta-aints T [~ t/[hr] E r [kJ] E~ [kJ] E~ [kJ] E 3 [kJ] 

I Min. tj No 500.0 0.23 167.2 104.8 0.42 61.98 

II Min. Er No 420.7 4.50 153.0 84.1 6.97 61.98 
III Min. Er t:,_< 2.0 441.9 2.00 154.7 89.5 3.23 61.98 
IV Min. Er tj< 1.5 449.3 1.50 155.9 91.4 2.46 61.98 
V Min. Er t:,_< 1.0 459.9 1.00 157.8 94.2 1.68 61.98 
VI Min. Er tj_< 0.5 478.4 0.50 161.9 99.0 0.88 61.98 

Korean J. Chem. Eng~(Vol. 16, No. 3) 
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Fig. 3. Required energy for the cases of non-adiabatic pyroly- 
sis process. 

take the shape of  increasing curves. 
Cases II to VI display the optimization results when the ob- 

jective function is the reaction energy. As shown in Table 1, 
all the resulting optimal temperature trajectories are those of  
some constant levels. These interesting results can be explained 
by analyzing the three different individual energy terms of  the 
total reaction energy as defined in Eq. (42). 

First, according to the definition of  E~, the energy for elevat- 
ing the reaction temperature to the operating level depends on 
the initial and final temperatures only, not on the transient path. 
Furthermore, since we have assumed that the energy is requir- 
ed into the system only when the temperature increases with 
time (i.e., dT/dt > 0), not when the temperature decreases (i.e., 
dT/dt < 0), any fluctuating temperature profiles are excluded for 
the minimization of E~. For the case of E2, since the final time tj 
is an exponentially decreasing function of  temperature while the 
integrand (T-T,) linearly increases with temperature, which thus 
makes E 2 a decreasing function of  temperature, it is desirable 
for the minimum of E 2 to keep the temperature highest possi- 
ble. Finally, E3 depends on the final conversion only, and thus 
it becomes a constant value if the final conversion is fixed. 
Summing up these three cases for minimizing E~, E2 and E 3 

in Eq. (42), we can find that overall optimum temperature tra- 
jectories for the minimum reaction energy Er are constant tem- 
perature levels. 

Now that we have explained why the constant temperature 
profiles have been obtained as the optimal temperature trajecto- 
ries for all six cases of  Table 1, we continue to conduct more 
of  the detailed analysis of  individual cases. 

Case lI represents the results when the objective function is 
the reaction energy with no constraints on the reaction time. 
There is the optimal constant reaction temperature in this case, 
i.e., 420.7~ which results in the minimum level of  reaction 
energy. Here the penalty we have to pay is the longest reac- 
tion time of  4.5 hr. 

Cases HI, IV, V, and VI represent the results when the reac- 
tion energy is minimized with constraints on the reaction time. 
Since in real waste polymer pyrolysis processes we cannot allow 

the reaction time to get too long, these cases are of  practical 
importance. As the allowed reaction time becomes smaller, 
the optimal reaction temperature gets higher, which means that 
we have to pay progressively higher penalties 

All the results in Table 1 were obtained when the reactor 
was not adiabatic. In other words, some heat transfer between 
the reactor and the environment occurred, namely, a non-zero 
heat transfer coefficient, U-1.0E-04 W/m ~ If  the pyrolysis 
is done in complete insulation, i.e., U-0,  the results are like 
those in Fig. 4. In other words, in this unrealistic adiabatic case, 
the trivial results are obtained, i.e., the lowest allowable reac- 
tion temperature is the solution giving the minimum reaction 
energy required. This is not a surprising result because the 
heat transfer term (E2) in Eq. (42) which is a decreasing func- 
tion of temperature makes the optimal solution possible in non- 
adiabatic cases in Table 1, while the other two terms in Eq. 
(42) are non-decreasing functions of  temperature. So if the sec- 
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Fig. 4. Required energy for the cases of adiabatic pyrolysis pro- 
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ond term is set to zero, Eq. (42) becomes a monotonically 
increasing function of  temperature. 

As shown in Cases Ill to VI in Table 1 where minimum 
time and minimum energy are both sought after, in real pyrol- 
ysis processes some combinations of  the optimization criteria 
are desirable to recommend the optimal pyrolysis strategy in 
realistic terms. As a reasonable candidate for the optimization 
criterion, we here introduce an economic cost objective func- 
tion for the optimization problem as defined below. 

C, :E~ • (utili~) + ( t ~ )  • (prmodnu~ 

rate J 2 profit J 

=C~:+C .... (43) 

where E~ is the energy consumed for producing 1 kg of  sty- 
rene monomer, t~ is the shortest realizable reaction time (0.23 
hr in Case 1 of  Table 1), and the utility rate means electric- 
ity cost per 1 kJ energy. Thus the first term of  Eq. (43), CE, 
means the electricity cost and the second term, CM, refers to 
the unrealized monomer cost due to extra running time of  
the reactor beyond the shortest possible reaction time. 

Now the above economic cost is used as an objective func- 
tion to be minimized for the optimization problem. The same 
methods as used for the problems of  minimum reaction time 
and/or minimum energy can be applied to obtain the optimum 
temperature profiles minimizing the cost function as defined by 
Eq. (43). One thing we have to consider here is the price of  
the recovered monomers as compared to the operating elec- 
tricity cost because the optimization results will obviously de- 
pend on the relative ratio of  these two terms in Eq. (43). Fig. 
5 illustrates such results. When the price of  recovered mono- 
mer price is high with relatively cheap electricity, our strategy 
for pyrolysis is to produce maximum amounts of  monomer at 
high reaction temperature, similar to Case I of Table 1. On the 
other hand, when the price of  recovered monomer is low with 
relatively expensive electricity, our strategy would be to run 
the reaction at low temperature, similar to Case 1i of  Table 1. 

400 i i i i i i 

300 ~High price 

\ 
200 �9 

loo 
~Medi 

0 I ~  ~ , I �9 I , I , I , I , 

360 380 400 420 440 460 480 500 
Constant temperature, T [~ 

Fig. 5. Cost of the pyrolysis process with different price levels 
of recovered monomers. 
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Table 2. Optimization results when the objective function is the 
cost of the pyrolysis process 

T [~ t/[hr] Er. [ld] Cr [" ] 

440.0 2.13 154.4 30.46 
450.0 1.45 156.0 29.88 
460.0 0.99 157.8 29.64 
465.3 0.81 159.0 29.62 

470.0 0.68 160.0 29.64 
480.0 0.47 162.3 29.79 
490.0 0.32 164.7 30.05 
500.0 0.23 167.2 30.39 

Therefore there is a possibility that an optimal reaction tem- 
perature exists when the monomer price is somewhere in the 
middle of  these two extremes. Table 2 shows an example of  
such cases where the economic cost attains a minimum value 
along with the optimal temperature of  465.3 ~ 

C O N C L U S I O N S  

The thermal degradation of  PS in batch reactors has been in- 
vestigated to find optimal temperature profiles minimizing the 
reaction time and the process energy for a desired conversion. 
It is assumed the pyrolysis mechanism of PS is composed of  
two reaction pathways, i.e., random degradation and specific 
degradation. The former is responsible for shifting the MWD 
in pyrolysis toward lower molecular weights while the latter 
for generating the monomer products. The theoretical model has 
been developed using continuous population balance equations. 
The transient change of  MWD of polymers during the pyroly- 
sis was easily tracked by solving three moment equations. The 
optimization problem finding optimal temperature profiles in 
this study is of  a nonlinear free-end-time/free-end-point type. 
Then we made a coordinate transformation introducing the con- 
version as a new independent variable to convert this independ- 
ent-variable minimization problem to a dependent-variable mi- 
nimization problem for which standard solution techniques are 
readily available. 

The results of  the optimization study are different depend- 
ing on the choice of  the objective functions: the allowable 
highest temperature is the most favorable condition for the min- 
imum reaction time, while the intermediate isothermal tempera- 
ture is optimum for minimum energy consumption. As a new 
optimization criterion combining the two different ones in the 
above, i.e., minimum time and minimum energy, a cost func- 
tion is introduced to judge the economical performance of  the 
pyrolysis process. The methodology of  this study is expected to 
be applicable to most industrial pyrolysis processes providing im- 
portant information for the optimal design and operation of  the 
reactors. 
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APPENDIX 

The derivation of the moment equations of Eqs. (11) to (16) 
from Eqs. (5) and (6) is illnsU-ated here [Wang et al., 1 995]. 
First, a continuous population balance equation for polymers 
is written as follows : 

df(x,t) 
dt 2k, I ;,O,(x,x' )f(x', t)dx' k,f(x,t) 

k~I~[x (x x~)]f(x,t)dx kf(x,t) (A1) 

The fimction ,O, (x, x') is a special case of the following gen- 
eral stoichiolnetric coefficient when In is set to zero, i.e., 

O~ . . . . . . . . . . .  ['~e,~x, x,~ P(2m+2) ~ 1 
' ) F(m+ 1)~(x')2"< ]o -0= <A2) 

where F ( ) is a galnma function which is defined as 

F(N) =i~:e-~x'-kLx (A3) 

We will here use the general form given by Eq. (A2) in deriv- 
ing the moment equations and then the conversion will be re- 
covered by substituting m=0 into the resulting equation. 

The moment operation is applied to Eq. (A1). 

I ) " ~ d x  = 2kl )~ dx gI3"f(x, t)dx 

+k=I ;x' i ;5 [x-(x'-x~)] f(x',t) cbr cbr 

k=I2x"f(x,t)dx (A4) 

=~F(2=OL 1)"~(T1F(2m+2)/F(m+l)S( 2 m + n . ~  ~ j+l)]~=o 

I ~(x')'f(x',t)&x' 

= [F(2m+ 2)F(m+n+ 1)/F(m + 1)/F(2m+ n+ 2)],,,= 0f(~)(t) 

= [zoo]~.0f~'h) 

where Z,~ =F(2m+2)F(m+n+ 1)/F(m+ 1)/F(2m+n+2) 

I :f( x"t)i; )~'5 [x-(x'-x~)] cLxcLx' 

=I  {(x'-x~)" f(x',t)&x' 

n ~  n 

=Io ,S(1)  (j)(x'yx~"f(x',t)dx' 

: ~ [ ( - 1  ) '-<;)x,"I :(x' )~f(x',t) cLx' ] 

=2~[W~s.f~ 

(A6) 

(aT) 

(AS) 

where W.2= ( 1)'-<j)x2 -j (A9) 

The resulting moment equation for the polymer is now 

df'~(t) 2k,Z.0f.~(t) k,t~)(t)+k~2~[W~s.ff~(t)] kf~(t) 
dt 

=[2k, Z.0 k~ k~]f'~(t)+k~2~[W~2ff~(t)] (AI0) 

By interchanging the orders of the integration on both sides 
of Eq. (A4), we obtain the following equation. 

d ~  {x~f(x, t)d~= 2k, I ]f(x',t )I ~'x"gZ(x, x') dxdx' 

k,I 7x"f(x,t) dx 

+k~I2f(x',t)I:'x"S[x (x' N)]dxdx' 

-k~ I ~x'f(x,t) cbr (A5) 

Since the second term on the RHS of Eq. (A5) is simply by 
definition the nth moment of f, f(~ here we only show the 
calculation of the first and the third terms. 

I~Tf(x',t)I: k'gZ(x, x') dxdx' 

i:f(x',t)Iik'x~(x' x)~F(2m+2) 

/[P(m+ 1 )~(x') .... ] cL,~ cLx' L =o 

= i ~f(x"t)I :k"+", s (-1)~-s (I~1) (x' ~x~-2F( 21n+2 ) 

/ [r (m+ 1)~(x')2"+~]dxdx'l,,, 0 

2 I I 1  2 I 2 +J 1 I = g  2( -1)~-( j )P(2m+2) /F(m+l) i : (x)  " fix,t) 

I:'x ~ ....... dxdx'],, 0 

= aF (-1)" ~ (q0 F(2m+ 2)/F(In+ 1 )2/.( 21n+n-j+ 1)1 

where Zoo 1, Z10 1/2, Z~0 1/3 (All)  

Woo 1, W~o -~,  W, 1, Wso -x2, W2, -2x~, W2~ 1 (A12) 

Finall, the above equation produces the following equations for 
the MWD of polymers when n takes on the values of 0, 1 
and 2. 

df~ [21gZ00 k, k~]f~176 
dt 

=Lt~~ 

dfl~(t)_ [2kZ,0_k _kdt~n(t)+k~2~ Wljfo)(t ) 
dt 

= kf')(t)+k~[~f~ + f')(t)] f')(t) 
= k~xf~ 

df~)(t) 
dt [2k, Z20 k, k~]f(a(t)+k~2<WJ~ ) 

(2) 2 o) (1) (2) =[-(1/3)L-k=]f (t)+k=[x=~-2x=f (t)+f (t)] 
(~) 1) ~ (o) =-(1/3)Lf (t)-2k=x=t ~ (t)+k~x=f (t) 

(A]3) 

(A 1 4) 

(A15) 

For the MWD of monomers, a similar procedure is followed 
to obtain the following moment equations. 

dg(')(t) Lxff<0~(t) (A16) 
dt 

Wtlen n=0, 1 and 2, 
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dg~@t) = k~tX0~(t) (A17) 

dg~(t) _ k=x~f(0/(t) (A18) 

~ ' ~  k~x~f/~ (A19) 

N O M E N C L A T U R E  

A area of reactor wall [m 2] 
cp heat capacity of reaction mass [kJ/mol~ 
c, concentration of monomers [g/L] 
Cz electricity cost [. ] 
CM unrealized monomer cost [* ] 
Cr total cost for producing 1 kg of styrene monomer [* ] 
E r total energy consumed for obtaining 90 % conversion [kJ] 
E; total energy consumed for producing 1 kg of styrene mon- 

omer [kJ/kg] 
E,, activation energy of the random degradation reaction 

[kcal/mol] 
E, : activation energy of the specific degradation reaction [kcal/ 

mol] 
f(~> �9 nth order molecular weight moment of f defined as Eq. 

(17) 
f(x, t) : molecular weight distribution of the polymers based on 

molar fraction [mol/L] 
f~(x, t) : molecular weight distribution of the polymers based on 

weight fraction [g/L] 
F :state equations given by Eqs. (11) to (16) 
g(~ �9 nth order molecular weight moment of g defined as Eq. 

(18) 
g(x, t): molecular weight distribution of the monomers based 

on molar fi-action [tool/L] 
g~(x, t): molecular weight distribution of the monomers based on 

weight fraction [g/L] 
G 
AHd 
k~ 

kr0 
k, 

ks0 
nl 

~c 

rd 
R 
t 
t/ 

T 
T~ 

transformed state equations given by Eqs. (31) and (32) 
heat of  depolymerization of polystyrene [kJ/mol] 
reaction rate constant of the random degradation reac- 
tion [hr ' ]  
frequency factor of the random degradation reaction [hr -~] 
reaction rate constant of the specific degradation reaction 
[hr -1] 
frequency factor of the specific degradation reaction [hr ~] 
weight of reaction mixtures [kg] 
number average molecular weight [g/mol] 
cooling rate by heat transfer with atmosphere [kJ/tn-] 
heating rate by heat source [kJ/hr] 
rate of pyrolysis reaction [mol/L hr] 
universal gas constant [kcal/mol K] 
reaction time [}lr] 
fmal reaction time taken for obtaining 90 % conversion 
[hi-] 
the shortest realized reaction time in Table 1 [hr] 
reaction temperature [~ 
room temperatm-e [~ 
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U : overall heat transfer coefficient [W/re~ 
V :reactor vokane [m 3] 
x : molecular weight of  polymers [g] 
xo : lowest molecular weight in polymer samples [g] 
x, : molecular weight of monomers [g] 
y : transformed variables given by Eqs. (27) to (30) 

Greek 
c~ 

6 
F 

P 
0-2 

r~ 

Letters 
: parameter in the gamma distribution 
: width parameter in the gamma distribution 
: Dirac delta function 
: gamma fimction 
: density of  reaction mixtures [kg/L] 
: variance of the molecular weight distribution 
: new time variable denoting the conversion of the pyrol- 
ysis reaction [ht] 

: final time denoting the final conversion [hr] 
: stoichiometric coefficient for the random degradation 
given by Eq. (7) 

: stoichiometric coefficient for the specific degradation 
given by Eqs. (8) and (9) 
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